Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Girls' Primary Education Completion Rate Indicator

Description

This indicator measures a government’s commitment to basic education for girls in terms of access, enrollment, and retention. MCC uses this indicator for countries with a GNI per capita below $2,145 only.

Relationship to Growth & Poverty Reduction

Universal basic education is an important determinant of economic growth and poverty reduction. Empirical research consistently shows a strong positive correlation between girls’ primary education and accelerated economic growth, slower population growth, higher wages, increased agricultural yields and labor productivity, and greater returns to schooling as compared to men.38 A large body of literature also shows that increasing a mother’s schooling has a large effect on her child’s health, schooling, and adult productivity, an effect that is more pronounced in poor households.39 By one estimate, providing girls one extra year of education beyond the average can boost eventual wages by 10-20 percent.40 The social benefits of female education are also demonstrated through lower fertility rates, higher immunization rates, decreased child and maternal mortality, reduced transmission of HIV, fewer cases of domestic violence, greater educational achievement by children, and increased female participation in government.41

Methodology

Indicator Institution Methodology

The Girls’ Primary Education Completion Rate indicator is measured as the gross intake ratio into the last grade of primary, a proxy for primary completion. This is measured as the total number of female students enrolled in the last grade of primary (regardless of age), minus the number of female students repeating the last grade of primary, divided by the total female population of the standard entrance age of the last grade of primary. The primary completion rate reflects the primary cycle as defined by the International Standard Classification of Education (ISCED), ranging from three or four years of primary education (in a very small number of countries) to five or six years (in most countries), to seven years (in a small number of countries). For the countries that changed their primary cycle, the most recent ISCED primary cycle is applied consistently to the whole series. For FY25, MCC will use the most recent UNESCO data since 2018.

This indicator was selected since data limitations preclude adjusting the girls’ primary education completion rate for students who drop out during the final year of primary school. Therefore, UNESCO’s estimates should be taken as an upper-bound estimate of the actual female primary completion rate. Because the numerator may include late entrants and over-age children who have repeated one or more grades of primary school but are now graduating, as well as children who entered school early, it is possible for the primary completion rate to exceed 100 percent.

MCC Methodology

MCC uses the most recent data point in the past six years (since 2018) 42

MCC draws upon data from UNESCO’s Institute of Statistics as its exclusive source of data for this indicator. Specifically, MCC uses the indicator named “Gross intake ratio to the last grade of primary education, female (%)” from SDG 4.1.3. To receive an FY25 score, countries must have a UNESCO value in 2018 or later. MCC uses the most recent year available, that is, MCC uses the most recent data from the past six years. If a country does not have UNESCO data at any point from 2018 or later, it does not receive an FY25 score. As better data become available, UNESCO makes backward revisions to its historical data.

Footnotes
  • 38.Behrman, Jere R. and Anil B. Deolalikar. 1995. Are there differential returns to schooling by gender? The case of Indonesian labor markets. Oxford Bulletin of Economics and Statistics, 57(1): 97-117. Chen, Derek H. C. 2004. Gender Equality and Economic Development: The Role for Information and Communication Technologies. World Bank Policy Research Working Paper 3285. Christiaensen, L., L. Demery, and S. Paternostro. 2003. Macro and Micro Perspectives of Growth and Poverty in Africa. The World Bank Economic Review 17: 317-334. Deolalikar, Anil B. 1993. Gender Differences in the Returns to Schooling and in School Enrollment Rates in Indonesia. Journal of Human Resources 28 (4): 899–932. Drèze, Jean and Mrinalini Saran. 1995. Primary education and economic development in China and India: Overview and two case studies. In Basu, K., Pattanaik, P., and Suzumura, K. (eds) Choice, Welfare, and Development: Essays in Honour of Amartya Sen. Oxford: Clarendon Press. Esteve-Volart, Berta. 2000. Sex discrimination and Growth. IMF Working Paper WP/00/84. Klasen, Stephan. 2002. Low Schooling for Girls, Slower Growth for All? World Bank Economic Review 16(3): 345-373. Quisumbing, Agnes R. 1996. Male-female difference in agricultural productivity: methodological issues and empirical evidence. World Development 24 (10): 1579-95. Ravallion, M., and Datt, G. 2002. Why has economic growth been more pro-poor in some states of India than others? Journal of Development Economics 68 (2): 381-400. Schultz, T. Paul. 1993. Returns to women’s schooling. In Elizabeth King and M. Anne Hill, eds., Women’s Education in Developing Countries: Barriers, Benefits, and Policy. Baltimore: Johns Hopkins Press. Schultz, T. Paul. 1999. Health and schooling investments in Africa. The Journal of Economic Perspectives, 13(3): 67-88. Schultz, T. Paul. 2002. Why governments should invest more to educate girls. World Development 30(2): 212. Self, Sharmistha and Richard Grawbowski. 2004. Does education at all levels cause growth? India, a case study. Economics of Education Review, 23: 47-55. World Bank. 2001. Engendering Development: Through Gender Equality in Rights, Resources, and Voice. New York: Oxford University Press.
  • 39.Alderman, Harold, and Elizabeth M. King. 1998. Gender Differences in Parental Investment in Education Structural Change and Economic Dynamics 9 (4): 453–68. Behrman, Jere, Andrew D. Foster, Mark R. Rosenzweig, Prem Vashishtha. 1999. Women’s Schooling, Home Teaching, and Economic Growth. Journal of Political Economy 107 (4): 682–719. Filmer, Deon. 2000. The Structure of Social Disparities in Education: Gender and Wealth. Policy Research Working Paper No. 2268, World Bank Development Research Group/Poverty Reduction and Economic Management Network. Washington, D.C.: World Bank. King, Elizabeth, and Rosemary Bellew. 1991. Gains in the education of Peruvian women, 1940-1980. In Barbara Herz and Shahidur Khandkher, Eds. Women’s Work, Education, and Family Welfare in Peru. World Bank Discussion Paper No. 166. Washington D.C.: World Bank. Klasen, Stephan. 2002. Low Schooling for Girls, Slower Growth for All? World Bank Economic Review 16(3): 345-373. Lavy, Victor. 1996. School Supply Constraints and Children’s Educational Outcomes in Rural Ghana. Journal of Development Economics 51 (2): 291–314. Lillard, Lee A. and Robert J. Willis. 1993. Intergenerational Education Mobility: Effects of family and state in Malaysia. RAND Labor and Population Program Working Paper Series 93-38. Psacharopoulos, George. 1984. The contributions of education to economic growth: International comparisons. In Kendrick, J.W. (ed.) International Comparisons of Productivity and Causes of the Slowdown. American Enterprise Institue/Ballinger. Ridker, Ronald G., ed. 1997. Determinants of Educational Achievement and Attainment in Africa: Findings from Nine Case Studies. SD Publication Series, Technical Paper No. 62. Washington, D.C.: U.S. Agency for International Development. Schultz, T. Paul. 2002. Why governments should invest more to educate girls. World Development 30(2): 212. Thomas, Duncan. 1990. Intra-household allocation: An inferential approach. Journal of Human Resources 25(4): 635-64.
  • 40. Girls’ education also leads to increased income for both individuals and nations as a whole. See Herz, Barbara and Gene Sperling. 2004. What works in girls’ education: evidence and policies for the developing world. New York: Council on Foreign Relations. Psacharopoulos, George and Harry Anthony Patrinos. 2004. Returns to investment in education: a further update. Education Economics 12(2): 111-134.
  • 41.Barro, Robert J. 1999. Determinants of Democracy. Journal of Political Economy107 (6): S158–83. Behrman, J.R. and A Deolalikar. 1998. Health and nutrition. In Handbook of Development Economics, eds. H. Chenery and T. N. Srinivasan. Amsterdam: North Holland. Cochrane, S., J. Leslie, and D. O’Hara. 1982. Parental education and child health: Intercountry evidence. Health Policy and Education 2:213-50. De Walque, Damien, J. S. Nakiyingi-Miiro, J. Busingye, and J. A. Whitworth. 2005. Changing Association between Schooling Levels and HIV-1 Infection Over 11 Years in a Rural Population Cohort in South-West Uganda. Tropical Medicine and International Health 10(10): 993-1001. Dollar, David, Raymond Fisman, and Roberta Gatti. 2001. Are women really the ‘fairer’ sex? Corruption and women in government. Journal of Economic Behavior and Organization 46(4): 423–429. Gage, Anastasia, Elisabeth Sommerfeldt, and Andrea Piani. 1997. Household structure and childhood immunization in Niger and Nigeria. Demography 34(2): 195-309. Herz, Barbara and Gene Sperling. 2004. What works in girls’ education: evidence and policies for the developing world. New York: Council on Foreign Relations. Hill, M. Anne and Elizabeth King. 1995. “Women’s Education and Economic Well-Being.” Feminist Economics 1(2): 21-46. Klasen, Stephan. 1999. Does Gender Inequality Reduce Growth and Development? Evidence from Cross-Country Regressions. Policy Research Report on Gender and Development Working Paper No. 7. Washington, D.C.: World Bank. Lloyd, C. B., C. E. Kaufman, and P. Hewett. 2000. The Spread of Primary Schooling in Sub-Saharan Africa: Implications for Fertility Change. Population and Development Review 26 (3): 483–515. Malhotra, Anju, Caren Grown, and Rohini Pande. 2003. Impact of investments in female education on gender inequality. Washington, D.C.: International Center for Research on Women. Schultz, T. Paul. 1993. “Returns to women’s schooling,” in Elizabeth King and M. Anne Hill, eds., Women’s Education in Developing Countries: Barriers, Benefits, and Policy. Baltimore: Johns Hopkins Press. Shuey, Dean, Bernadette B. Babishangire, Samuel Omiat and Henry Bagarukayo 1999. Increased sexual abstinence among in-school adolescents as a result of school health education in Soroti district, Uganda. Health Education Research 14(3): 411-419. Summers, Lawrence H. 1994. Investing in all the people: educating women in developing countries. EDI Seminar Paper No. 45, Washington, D.C.: World Bank. Thomas, D., J. Strauss, and M. H. Henriques. 1990. Child survival, height for age, and household characteristics in Brazil. Journal of Development. 33(2): 197-234. Trussell, T. J. and S. Preston. 1982. Estimating the covariates of child mortality from retrospective reports of mothers. Health Policy and Education. 3:1-36. UNESCO. 2000. “Women and Girls: Education, Not Discrimination.” Paris: UNESCO. Vandemoortele, J. and E. Delamonica. 2000. Education ‘vaccine’ against HIVAIDS. Current Issues in Comparative Education 3(1). World Bank. 2002. Education and HIV/AIDS: A Window of Hope. World Bank Education Section, Human Development Department. Washington D.C.: World Bank.
  • 42. Missing data points on the historic graphs may either denote data points that are off the scale of the chart, or years in which data is missing. If there is no data for the past six years, MCC indicates this with an “n/a”.

Source

  • United National Educational, Scientific, and Cultural Organization Institute for Statistics (UNESCO/UIS)

    UIS compiles education expenditure data from official responses to surveys and from reports provided by education authorities in each country. Specifically, MCC uses government expenditure on education as a percentage of GDP (%) from the SDG database.